Budgetary Proposal

Project Name: Equipment Type: Fort Bragg, CA BT 8 221°F 105°C

Proposal Date: Proposal Number:

9/15/2020 461135

Huber Contacts:
John Lewis
Regional Sales Director - West
704-995-5451
John@hhusa.net

Represented by:
Matt Bentley
Goble Sampson Associates
(704) 650-7332
mbently@goblesampson.com

Huber Technology, Inc.

1009 Airlie Parkway Denver, NC 28037

Phone: (704) 949-1010 Fax: (704) 949-1020

Belt Dryer Design Summary

Fort Bragg, CA September 15, 2020

Sludge Characteristics:

Upstream Process: Activated Sludge with Secondary Clarifier

Digestion Process: Aerobic Digester

Sludge Type: Waste Activated Sludge

Sludge VSS: $\leq 70\%$ Sludge Protein Content: $\leq 30\%$

Sludge Feed Density: 55 lb/cuft
Dried Sludge Density: 25 lb/cuft

Project Design Parameters:

Sludge Feed Rate: 1,084 dry ton/yr (986 dry tonne/yr)

Inlet Cake Concentration: 20%

Calculated Hydraulic Loading Rate (per unit): 5,421 wet ton/yr (4,928 wet tonne/yr)

Equipment Recommendation: Air Flow Design:

Recommended unit model: Huber Dryer BT 8 Fresh Air System

Recommended unit quantity: 1

Project Design Calculations:

Sludge Feed Rate to the Dryer: 1,738 wet lb/hr

Estimated Dry Cake Solids Out: 92%

Annual Water Evaporation Requirement: 4,243 ton water/year (3,857 tonne water/year)

Assumed Annual Operation Time: 6,240 hr/year (24 hr/day, 5 days/wk, 52 wks/yr)

Hourly Water Evaporation Requirement: 0.68 ton water/hr (0.62 tonne water/hr)

1,360 lb water/hr (617 kg water/hr)

Solids Loading Rate Out: 1,178 wet ton/year (1,071 wet tonne/year)

Equipment Design Parameters:

Thermal Heat Source: Hot Water Boiler (Propane)

Estimated Heat Supply Temperature: 221°F (105°C)

Equipment Requirements:

Estimated Heat Demand (at the dryer): 1,300 Btu/lb water evaporated

1.77 MMBTU/hr

Estimated Electrical Demand: .03 kWh/lb water evaporated

Estimated Exhaust Air Flow: 10000 m3/hr

5900 CFM

Notes and Assumptions

Fort Bragg, CA September 15, 2020

- 1. Equipment specification and drawings are available upon request.
- 2. If there are site-specific hydraulic constraints that must be applied, please consult the manufacturer's representative to ensure compatibility with the proposed system.
- 3. Huber Technology warrants all components of the system against faulty workmanship and materials for a period of 12 months from date of start-up or 18 months after shipment, whichever occurs first.
- 4. Budget estimate is based on Huber Technology's standard Terms & Conditions and is quoted in US dollars unless otherwise stated.
- 5. Equipment recommendations are based on information provided to Huber Technology. Subsequent information which differs from what has been provided may alter the equipment recommendation.
- 6. Pricing is based on Huber's standard control panel arrangement.
- 7. The offer is based on normal, homogenous municipal sludge with a minimum organic content of 45% and a maximum organic content of 70%. Sludge with organic content around 70% is assumed to have less than 45% protein value.
- 8. Feed sludge must be free of any foreign matter to the greatest extent possible. Maximum particle size allowed is 8 mm (spherical diameter). A Huber Strainpress is recommended between the digester or sludge storage tank and the dewatering operation to provide this screening and to extend the operational life of the dryer's extruder.
- 9. Feed sludge must be free of any pollutants which could be hazardous, toxic, radioactive, corrosive, flammable, or explosive.
- 10. Dewatered cake feed characteristics have been assumed based on the information provided to Huber. Please notify Huber if the cake conditions will differ from those described in this proposal.
- 11. Annual solids loading is based on 200,000 gal/wk at 2.5% feed solids to dewatering process with 100% capture rate.

Equipment Summary

Fort Bragg, CA September 15, 2020

Dryer System:

One (1) Huber BT 8 Dryer, including (each):

- One (1) Belts
 - Temperature Resistant Plastic
 - Upper Belt Drive
 - Max 5HP, 460VAC, 3ph motor, VFD
 - Lower Belt Drive
 - Max 1HP, 460VAC, 3ph motor, VFD
 - Belt Washing System for each belt with a common booster pump
 - Two (2) 0.5HP, 460VAC, 3ph motors for belt wash drive
 - 5HP, 460VAC, 3ph motor for booster pump
- Support Frame
 - Internal Frame: 316L Stainless Steel
 - Head Pieces: 316L Stainless Steel
 - Interior Panels: 316L Stainless Steel
 - Exterior Panels: Painted Steel
- Extruder System
 - Traction Drive System
 - Max 1.5HP, 460VAC, 3ph motor, VFD
 - Cutter Knife System
 - Max 7.5HP, 460VAC, 3ph motor, VFD
 - 316L Stainless Steel Construction
 - Feed Hose 6" (connects at the end of the dryer, reference drawings)
- Heat Exchangers:
 - Eight (8) Main Heat Exchangers
 - Combination 316 Stainless Steel Construction, AIMg
 - Each with a modulated valve 120VAC
 - One (1) Preheat Heat Exchanger
 - Combination of Galvanized Steel, Copper and AIMg
 - Two (2) Heat Recovery Heat Exchangers with recirculation pump
 - Combination of 316 Stainless Steel, Galvanized Steel, Copper and AIMg
 - 1HP, 460VAC, 3ph motor
- Fans:
 - Four (4) Process Fans:
 - 316 Stainless Steel Materials
 - Drive Motors
 - 10HP, 460VAC, 3ph Drive Motor
 - •Exhaust Fan:

- 316 Stainless Steel Casing Material
- 50HP, 460VAC, 3ph Drive Motor
- Outlet Conveyor:
 - 316 Stainless Steel Material
 - Shafted Screw
 - Carries Sludge to end of the dryer (reference drawings)
 - 2HP, 460VAC, 3ph motor
- Instrumentation (Huber Standard*):
 - Inlet Moisture sensor
 - Discharge Moisture Sensor
 - Discharge Sludge Temperature Sensor
 - Two (2) transfer chamber level sensors
 - Three (3) Extruder Proximity Sensors
 - Extruder Pressure sensor
 - Extruder Camera
 - Two (2) Belt Wash proximity sensors
 - Two(2) Belt Motion Sensors
 - Two(2) Belt Proximity Sensors
 - One (1) access door safety switch
 - Five (5) Pressure sensors for each module
 - Two (2) Temperature and Moisture Sensors for fresh and exhaust air
 - One (1) Flow meter for heating water
 - One (1) Calorimeter for heating water
 - One (1) pressure sensor for heating water
 - Two (2) Temperature sensors supply and return of heating water
 - Two (2) Temperature sensors supply and return of heat recovery water
 - Eight (8) Temperature sensors after each main heat exchanger
 - Eight (8) Flow control valves -one (1) for each main heat exchanger
- * Instrumentation subject to change based on updated controls design of Huber Technology, Inc

Ancillary Equipment

- Control Panel with Allen Bradley PLC and HMI
- Heat Recovery and Cleaning Pump

Freight and Startup:

- Standard Huber Recommended Start-up Services
- Freight to jobsite.

Total Price: \$ 3,800,000 (per unit)

Items Not Supplied by Huber

Fort Bragg, CA September 15, 2020

Items not included in the above offering:

- Piping between all supplied equipment
 - Pipes between boiler system and dryer
 - Pipes between boiler system and preheat heat exchanger
 - Pipes for water supply to belt cleaning system
 - Pipes for heat recovery system
 - Pipes for scrubber process water (if Required)
 - Pipes for sludge feed between Sludge Feed Pump and Dryer Extruder Hose
- Wiring between all supplied equipment
- Installation
- Building structures
- Site Preparation
- Required maintenance platforms and cranes
- Ductwork and insulation suppling fresh air to the dryer
- Ductwork and insulation for exhaust air to the odor control (if required)
- Boiler system fresh air duct and exhaust stack (if required)
- Gas Cleaning System for Digester Gas (if required)