

Water Distribution System Master Plan

City of Fort Bragg

Agenda

- Introductions
- Treated Water Distribution System
- Purpose and Goals
- Master Planning Process
- Key Accomplishments
- Current Performance& Future Considerations
- Capital Plan
- Conclusion & Summary of Recommendations

Introduction

Speakers

Alex Johnson
Senior Project
Manager

Philip Tiewater
Principle-in-Charge

City Team

Chantell O'Neal Project Manager - Assistant Director - Engineering

John Smith Director of Public Works

Heath Daniels Operations & Maintenance Supervisor

Diane O'Connor Assistant City Engineer

HDR Team

Scott Humphrey Technical Lead

Allan Scott Technical Advisor

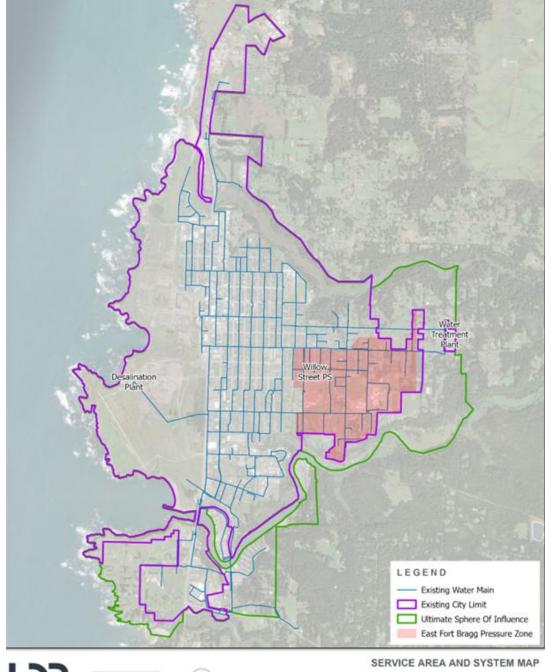
Roger Null Technical Advisor

Joel Griffin Mapping/GIS

Mark Stanley Geotechnical Assessment

Nathalie Beauvais Climate Impact Assessment

Linda Fisher Environmental/Programmatic EIR

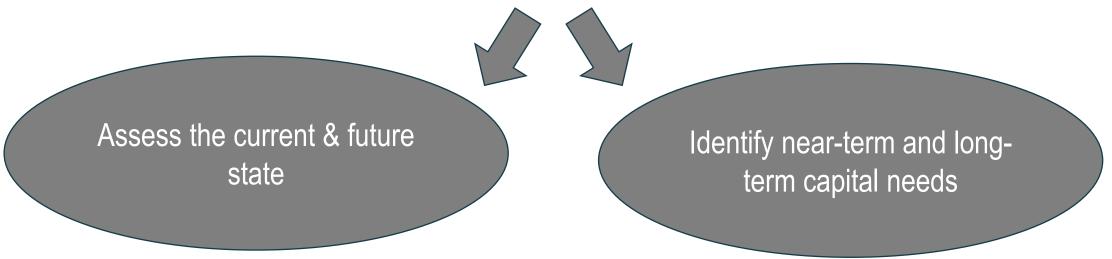

Morgan DeAngelis Risk Analysis/Risk Model

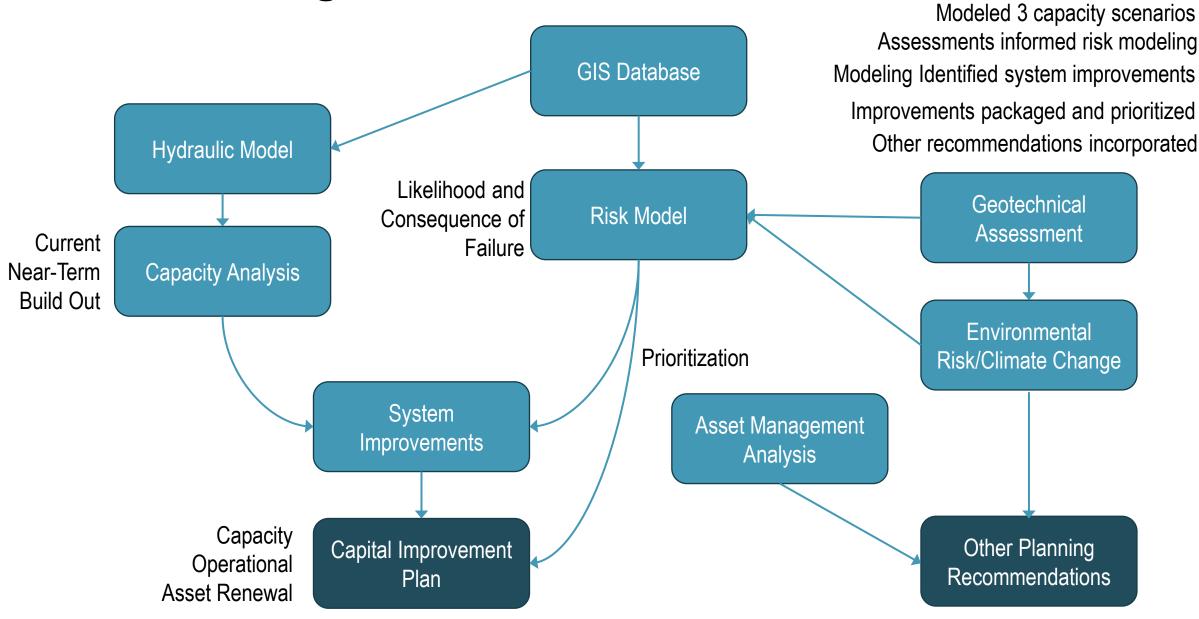
Treated Water Distribution System

This master plan assesses treated water distribution infrastructure starting at the treatment plant outlet and includes evaluation the following infrastructure:

41 miles of pipeline

- System Built (1960-2000s)
- 6 to 20 inches in diameter
- AC, PVC, DIP
- 4 Storage Tanks
 - 1.5 to 1.6 MG
- 1 Pump Station and Pressure Zone (EFBPZ)

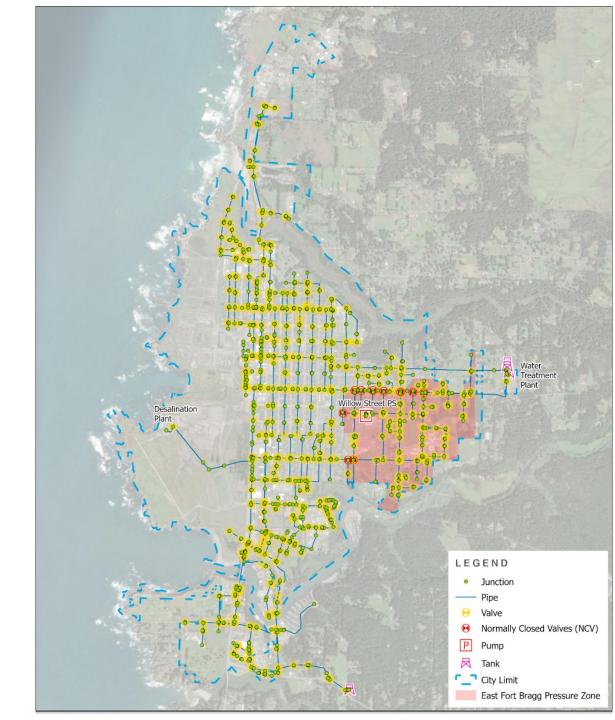



Purpose and Goals

Considerations: aging infrastructure, technological advances, community growth, and seismic, environmental, and climate risk.

Master Planning Process

Developed new GIS Data Set


GIS foundation for Modeling

Key Accomplishments

- GIS database to support hydraulic modeling, risk analysis, and current and future capital planning
- 2. System hydraulic model
- 3. Current and future demand analysis
- 4. Build-out capacity analysis
- 5. Geotechnical & environmental risk analysis
- 6. Climate risk analysis
- 7. Risk assessment model
- 8. CIP plan, including pipeline replacement strategy
- 9. Analysis of potential funding opportunities
- 10. CEQA compliance strategy
- 11. Asset management strategy and recommendations for implementation

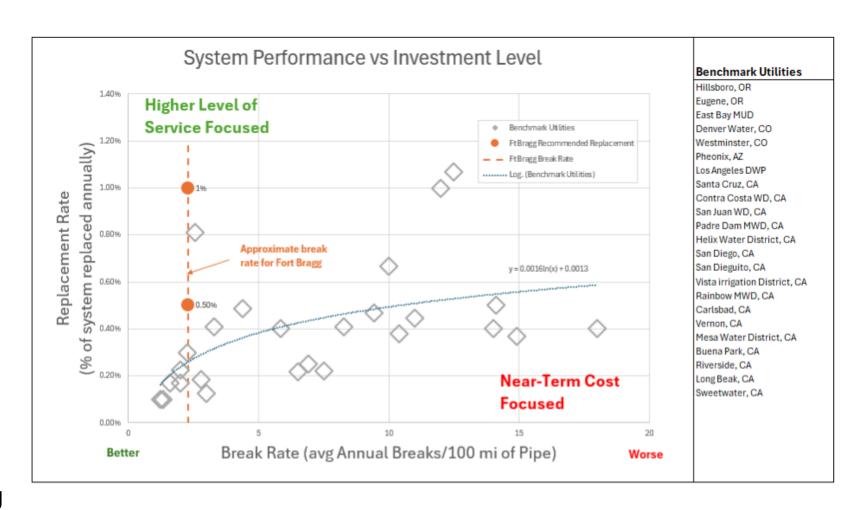
Today - Existing Water Distribution System

- Adequately satisfies current needs
- Performs well & in good condition
 - Well-maintained
 - Low break rates compared to other utilities
- Needs improvements to supply fire flows
- Reaching end of design life (next ~10 years)
 - Can expect problems to become more frequent
 - Plan now for system renewal

North Fort Bragg Valves (V-1) East Fort Bragg Pressure Zone Low Priority CIP High Priority CIP CIP Project Line

Planning for the Future Treatment Capacity, Fire Flows, Expansion

- Sufficient water treatment capacity for current and likely future water demands
- Improvements to current fire flow capacity
 - Willow Creek Pump Station fire pump upgrade
 - Targeted pipeline improvements to address existing deficiencies
- Operational Improvements
 - Oak Street Isolation Valves
- Noyo Center water line


Planning for the Future

System Renewal

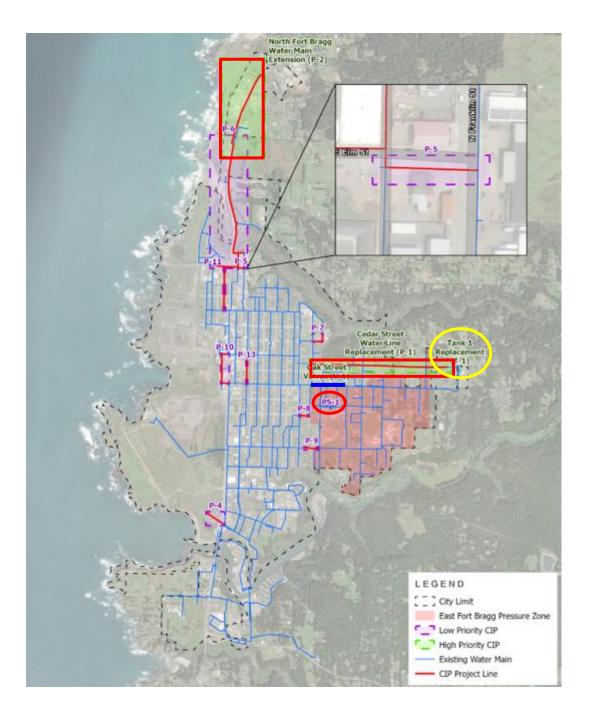
1% annual replacement rate recommended

Targeted pipe replacement:

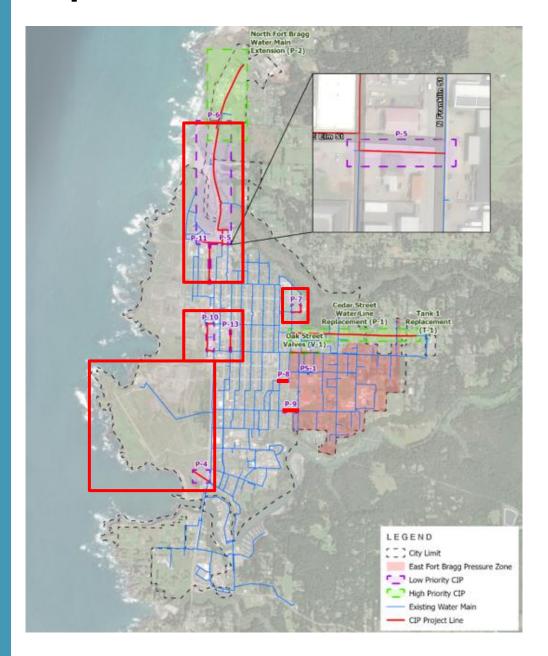
- Current information & Conditions
- Hydraulic Model
- Risk Model
- Opportunistic pipe sampling

Planning for the Future: Risks Seismic activity, drought, wildfire, sea-level rise

- Seismic Risk Bridge crossings vulnerable to movement; consider ERDIP or articulating joints for critical lines
- 2. Densification Soil spreading or groundwater shifts may cause settlement damage
- 3. Landslides & Bluff Erosion Differential settlement or pipe stretching from slope failures
- 4. Soil Corrosivity Coastal soils more acidic, increased pipe corrosion risk
- 5. Water Supply Resiliency Challenges
 - 1. Increasing drought frequency and declining spring water availability
 - 2. Rising salinity and sea-level impacts at surface water intakes
 - 3. Continued evaluation of supply options is recommended


Capital Plan – Next 5 Years

Priority	CIP ID	Project Name	Driver	Cost ^a
1	PS-1	Pump Station Upsize	Capacity or Fire Flow Deficiency	\$8,141,000
2	V-1	Oak Street Valves	Operational Improvements	\$93,000
3	P-1	Cedar Street Water Line Replacement	Capacity or Fire Flow Deficiency	\$3,357,000
4	T-1	Tank 1 Upgrade	Asset Renewal	\$8,955,000
5	P-2	North Fort Bragg Water Main Extension	Capacity or Fire Flow Deficiency	\$1,384,000
6	PL-1	System Renewal- Pipe Replacement	Asset Renewal ^b	\$2,830,000
7	O-1	Opportunistic Pipe Sampling	Other	\$69,000
8	0-2	CIP Update	Other	\$110,000
9	O-3	CMMS Needs Analysis	Other	\$39,000


Next 5 Year Sub-Total : \$24,978,000

^a Project Costs Escalated for Inflation

^b Budget reserved to meet system renewal goal. Projects to be identified based on condition and risk, or emergent issues

Capital Plan – 5 to 10 Years

Priority	CIP ID	Project Name	Driver	Cost ^a
10	P-7	East Laurel Street Water Main Replacement	Capacity or Fire Flow Deficiency	\$354,000
11	P-3	Noyo Center Water Line ^b	Capacity or Fire Flow Deficiency	\$2,985,000
12	P-6	North Main Street Water Main Replacement	Capacity or Fire Flow Deficiency	\$4,016,000
13	P-14	East Alder Street Water Main Replacement	Capacity or Fire Flow Deficiency	\$470,000
14	P-10	Chief Celeri Dr Water Main Replacement	Capacity or Fire Flow Deficiency	\$951,000
15	P-4	Noyo Point Road Water Main Replacement	Capacity or Fire Flow Deficiency	\$455,000
16	P-8	Maple Street Water Main Loop	Capacity or Fire Flow Deficiency	\$206,000
17	P-5	East Elm Street Water Main Loop	Capacity or Fire Flow Deficiency	\$145,000
18	P-9	East Chestnut Street Water Main Replacement	Capacity or Fire Flow Deficiency	\$330,000
19	P-11	Spruce Street Water Main Replacement	Capacity or Fire Flow Deficiency	\$873,000
20	PL-2	System Renewal- Pipe Replacement	Asset Renewal ^c	\$3,280,000
21	0-4	Opportunistic Pipe Sampling	Other	\$80,000
22	O-5	CMMS Acquisition & Implementation ^c	Other	\$191,000
23	O-6	CIP Update ated for Inflation Budget reserved to meet s	Other	\$127,000

^a Project Costs Escalated for Inflation^bP-3 is dependent on development at

the GP Mill site

Budget reserved to meet system renewal goal. Projects to be identified based on condition and risk, or emergent issues

Conclusion & Summary of Recommendations

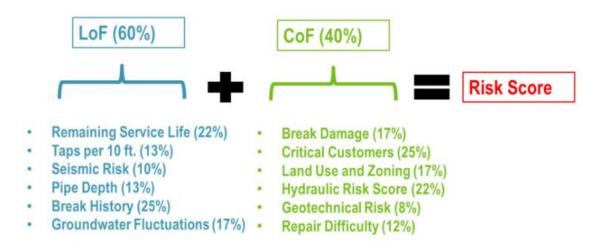
- Purpose
 - Assess the current & future state
 - Identify near-term and long-term capital needs
- Infrastructure good condition, well maintained, reaching the end of useful life.
 - Expect efforts to replace or renew aging infrastructure
- \$39M of capital projects over the next 10 years addressing aging infrastructure, fire flow, and City growth
 - Identified and prioritized to mitigate risk and to maintain current levels of service.

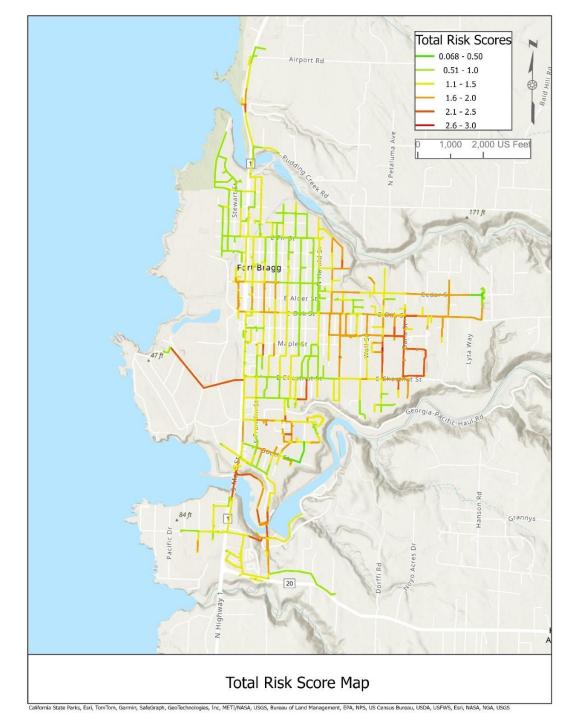
Questions

Treated Water Capacity, Expansion, & Fire Flow

Average & Maximum Daily Water Demand Projections for Existing, Near-Term, and Buildout

Description	Residential	Non- residential	Water Loss	Total ADD	Total MDD
	ADD (mgd)	ADD (mgd)	(mgd) ⁽²⁾	(mgd)	(mgd)
Existing Usage	0.428	0.156	0.11	0.58	1.01
Existing + Near Term Usage	0.440	0.165	0.11	0.61	1.05
Existing + Near Term + Buildout Usage	0.717	0.641	0.24	1.36	2.35


- Existing Demand: 1.01 MGD
- Near-Term Demand (next 10 years): 1.05 MGD
- Buildout Demand (> 10 years):2.35 MGD
 - GP Mill Site, and Annexation areas


Notes on Demand Analysis:

- Assessed water usage data from June 2018 to May 2021
- The city averages 0.59MGD with low density residential using the most (41%)
- Water loss for the City (23%) are above the national target (9-10%) but declining trend shows progress

Risk Assessment

- Risk assessment done to prioritize capital improvement decisions in the Master Plan
- Risk model developed to assign relative risk score based on:
 - Likelihood of Failure (LoF)
 - Consequence of Failure (CoF)

Funding

Table 26 – Potential Funding and Project Eligibility Matrix

CIPID	Project Name	WIFIA	HUD CDBG	EDA Public Works	USDA Loans and Grants	EPA SRF
P-1	Cedar Street Line Replacement	х		х		х
V-1	Oak Street Valves	х		х		х
P-2	North Fort Bragg Water Main Extension	х		х		х
T-1	Tank 1 Replacement	х		х		х

Table 27 – Available Funding Summary

Source	Funding Type	Available \$	Notes
WIFIA	Long-Term Loan	49% of eligible projects over \$20M and \$5M for small communities	Interest rate based on U.S. Treasury Securities Maturity up to 35 years Sculpted debt Letters of Interest on a rolling basis
DWSRF Loan/Some C Funding Avail		\$391M	Low interest for 20-year maturity Available \$ = CA FY25 funding allocation Amount of funding likely to decline after 2026 Broad eligibility
HUD Community Development Block Grants	Grant	2025 Allocation not announced	Funds allocated to state, city, and county Project must resolve a problem that will help revitalize the community Short project completion window, 24 months
EDA Public Works and Economic Adjustment	Grant	\$30 million	Must promote economic development in disadvantaged areas Percent match requirements depending on disadvantaged status
USDA Water and Wastewater Loans and Grants	Predominately loans and some grants	Varies based on annual funding allocations	Projects must serve rural communities (population less than 10,000) Interest rates vary based on communities' disadvantaged status Up to 40-year payback period

Raw Water Supply Planning

- The City of Fort Bragg does not currently meet the supplier criteria that would require development of an Urban Water Management Plan (UWMP)
 - Does not serve more than 3,000 customers
 - Or supply more than 3,000 acre-ft of treated water annually

- In the absence of a formal UWMP the City has taken measures to assess and address the adequacy and reliability of their raw water supply.
 - 2015 Water-Supply Model To evaluate water-supply scenarios
 - 2016 Construction of the 45 acre-ft Summers Lane Reservoir
 - 2023 Pipeline improvements, including pressurized pipe and pump station force main at Newman Gulch.
 - 2025 Preliminary Engineering Reports Established for three new 45-acre-foot reservoirs, building off existing water rights

Environmental Compliance

CIP ID's	Expected LOE for CEQA Compliance
V-1	Exemption: Class 1
T-1	Exemption: Class 2
P-1, P-3, P-4, P-5, P-6, P-7, P-8, P-9, P-10, P-11, P-12, P-13, PS-1, P-2, P-14	Initial Study / Mitigated Negative Declaration
P-15, P-16	Environmental Impact Report

- Class 1 Exemption: Existing facilities
- Class 2 Exemption: Replacement or reconstruction.
- Initial studies (IS):
 - May result in either a negative declaration or mitigated negative declaration
- Environmental impact reports (EIR):
 - Required when significant impacts are found that cannot be mitigated to less than significant levels. Involve more evidence, process, time, and include a period of public review.

Capacity and Expansion

Table 10 – ADD and MDD Water Demand Projections for Existing, Near-Term, and Buildout

Description	Residential	Non- residential	Water Loss	Total ADD	Total MDD
	ADD (mgd)	ADD (mgd)	(mgd) ⁽²⁾	(mgd)	(mgd) (3)
Existing Usage (1)	0.428	0.160	0.106	0.694	1.20
Existing + Near Term Usage	0.440	0.170	0.110	0.720	1.24
Existing + Near Term + Buildout Usage	0.710	0.644	0.244	1.60	2.76

⁽¹⁾ GP Mill site area not included in the existing and near-term projections since it will only have water demand during buildout.

Existing Demand: 0.70 MGD

- Near-Term Demand (next 10 years): 0.72 MGD
 - Recent developments including housing, retail, and hotels. Annexation areas.
- Buildout Demand (> 10 years):1.6 MGD
 - GP Mill Site, and Annexation areas

Notes on Demand Analysis:

- Assessed water usage data from June 2018 to May 2021
- The city averages 0.59MGD with low density residential using the most (41%)
- Water loss for the City (23%) are above the national target (9-10%) but declining trend shows progress

⁽²⁾ Water loss calculated assuming that water loss remains the same as 2021 average (i.e., 18%).

⁽³⁾ MDD water demand projection calculated based on the selected MDD:ADD peaking factor of 1.73.

Geotechnical Evaluation & Risk

City is located on a seismically active, uplifted coastal terrace

Seismic risk

- Not within a fault line.
- Differential movement especially at bridge crossings may pose risk to distribution
 - Mitigation strategies may include:
 - Use of articulating joints
 - Earthquake Resistant Ductile Iron Pipes (ERDIP) for critical infrastructure

Densification/Liquification

 Significant settlement due to soil spreading or groundwater fluctuation could damage system

Land Slides & Bluff Erosion

 Differential settlement or pipe lengthening due to landslides pose risk to the system

Corrosivity

 Terrace deposits are acidic (corrosive) and become more so gradually closer to the ocean.

Environmental Evaluation & Risk

- Flooding The City is susceptible to flooding and severe winter storms.
- Fire significant fires have occurred in Northern California in the last few years and the City's fire hydrant system is critical infrastructure for public safety
- Chemically impacted sites Many of these sites are identified as having been remediated to meet standards set forward by regulatory agencies.
 - It should be noted that there may be residual chemically impacted soils that may require special testing and handling to determine material reuse or disposal.
 - The DTSC GeoTracker website should be referenced during future system upgrade or rehabilitation projects.

Environmental Evaluations

Climate Change Impacts

- Hotter temperatures
 - Adds demand and stress to the water system and exacerbates wildfire threat to infrastructure
- Variability in precipitation
 - May cause floods or droughts
- Sea level rise
 - Increase risks of landslides and erosion
 - Increase in salt-water intrusion to freshwater supply areas

Climate Change Mitigation

- Require varied and more adaptable water management
- Water distribution assets which may benefit the most from implementing resilience strategies include:
 - Pump station
 - Mains
 - Storage tanks
 - Water treatment plant

Environmental Practices

Water efficiency:

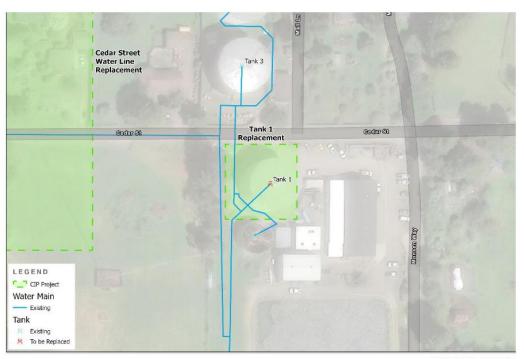
- Raw Water Line Replacement Project (Dewberry 2022) is upgrading critical infrastructure to improve reliability and efficiency of 2 mile section of aging raw water deliver pipeline
- Oneka Seawater Desalination Buoy Pilot Study designed to enhance resilience and efficiency of the water supply system of Fort Bragg
- Increasing reservoir storage to improve long-term water supply reliability and enhance drought resilience
- Regulating new and retrofitted landscapes for better water efficiency through new standards

Conservation

- Identified priority species
- Removal of fish passage barrier in 2016 from Newman Gulch
- City plans to continue considering ways to protect these populations

T-1 Tank 1 Replacement

CIP Year: ??


Description: Replace existing Tank 1 at the Water Treatment Plant.

Project Driver: Aging Infrastructure – repairs necessary

Expected Env. Compliance: Exemption: Class 2 for Replacement or Reconstruction

Projected Project Cost: \$8,955,000

Funding Opportunities: WIFIA, EDA Public Works, EPA SRF

TANK 1 REPLACEMENT Replacement of Tank 1 at Treatment Plant FORT BRAGG WATER CIP PROJECT

